We study reinforcement learning (RL) with linear function approximation. For episodic time-inhomogeneous linear Markov decision processes (linear MDPs) whose transition dynamic can be parameterized as a linear function of a given feature mapping, we propose the first computationally efficient algorithm that achieves the nearly minimax optimal regret $\tilde O(d\sqrt{H^3K})$, where $d$ is the dimension of the feature mapping, $H$ is the planning horizon, and $K$ is the number of episodes. Our algorithm is based on a weighted linear regression scheme with a carefully designed weight, which depends on a new variance estimator that (1) directly estimates the variance of the \emph{optimal} value function, (2) monotonically decreases with respect to the number of episodes to ensure a better estimation accuracy, and (3) uses a rare-switching policy to update the value function estimator to control the complexity of the estimated value function class. Our work provides a complete answer to optimal RL with linear MDPs, and the developed algorithm and theoretical tools may be of independent interest.
translated by 谷歌翻译
我们考虑在具有非线性函数近似的两名玩家零和马尔可夫游戏中学习NASH平衡,其中动作值函数通过繁殖内核Hilbert Space(RKHS)中的函数近似。关键挑战是如何在高维函数空间中进行探索。我们提出了一种新颖的在线学习算法,以最大程度地减少双重性差距来找到NASH平衡。我们算法的核心是基于不确定性的乐观原理得出的上和下置信度界限。我们证明,在非常温和的假设上,我们的算法能够获得$ O(\ sqrt {t})$遗憾,并在对奖励功能和马尔可夫游戏的基本动态下进行多项式计算复杂性。我们还提出了我们的算法的几个扩展,包括具有伯恩斯坦型奖励的算法,可以实现更严格的遗憾,以及用于模型错误指定的另一种算法,可以应用于神经功能近似。
translated by 谷歌翻译
我们在存在对抗性腐败的情况下研究线性上下文的强盗问题,在场,每回合的奖励都被对手损坏,腐败级别(即,地平线上的腐败总数)为$ c \ geq 0 $。在这种情况下,最著名的算法受到限制,因为它们要么在计算效率低下,要么需要对腐败做出强烈的假设,或者他们的遗憾至少比没有腐败的遗憾差的$ C $倍。在本文中,为了克服这些局限性,我们提出了一种基于不确定性的乐观原则的新算法。我们算法的核心是加权山脊回归,每个选择动作的重量都取决于其置信度,直到一定的阈值。 We show that for both known $C$ and unknown $C$ cases, our algorithm with proper choice of hyperparameter achieves a regret that nearly matches the lower bounds.因此,我们的算法几乎是两种情况的对数因素的最佳选择。值得注意的是,我们的算法同时对腐败和未腐败的案件($ c = 0 $)实现了近乎最理想的遗憾。
translated by 谷歌翻译
我们研究了基于模型的无奖励加强学习,具有ePiSodic Markov决策过程的线性函数近似(MDP)。在此设置中,代理在两个阶段工作。在勘探阶段,代理商与环境相互作用并在没有奖励的情况下收集样品。在规划阶段,代理商给出了特定的奖励功能,并使用从勘探阶段收集的样品来学习良好的政策。我们提出了一种新的可直接有效的算法,称为UCRL-RFE在线性混合MDP假设,其中MDP的转换概率内核可以通过线性函数参数化,在状态,动作和下一个状态的三联体上定义的某些特征映射上参数化。我们展示了获得$ \ epsilon $-Optimal策略进行任意奖励函数,Ucrl-RFE需要以大多数$ \ tilde {\ mathcal {o}}来进行采样(h ^ 5d ^ 2 \ epsilon ^ { - 2})勘探阶段期间的$派对。在这里,$ H $是集的长度,$ d $是特征映射的尺寸。我们还使用Bernstein型奖金提出了一种UCRL-RFE的变种,并表明它需要在大多数$ \ TINDE {\ MATHCAL {o}}(H ^ 4D(H + D)\ epsilon ^ { - 2})进行样本$达到$ \ epsilon $ -optimal政策。通过构建特殊类的线性混合MDPS,我们还证明了对于任何无奖励算法,它需要至少为$ \ TINDE \ OMEGA(H ^ 2d \ epsilon ^ { - 2})$剧集来获取$ \ epsilon $ -optimal政策。我们的上限与依赖于$ \ epsilon $的依赖性和$ d $ if $ h \ ge d $。
translated by 谷歌翻译
我们研究了用线性函数近似的加固学习中的违规评估(OPE)问题,旨在根据行为策略收集的脱机数据来估计目标策略的价值函数。我们建议纳入价值函数的方差信息以提高ope的样本效率。更具体地说,对于时间不均匀的epiSodic线性马尔可夫决策过程(MDP),我们提出了一种算法VA-OPE,它使用价值函数的估计方差重新重量拟合Q迭代中的Bellman残差。我们表明我们的算法达到了比最着名的结果绑定的更紧密的误差。我们还提供了行为政策与目标政策之间的分布转移的细粒度。广泛的数值实验证实了我们的理论。
translated by 谷歌翻译
我们研究了线性函数近似的强化学习(RL)。此问题的现有算法仅具有高概率遗憾和/或可能大致正确(PAC)样本复杂性保证,这不能保证对最佳政策的趋同。在本文中,为了克服现有算法的限制,我们提出了一种新的算法,称为长笛,它享有统一-PAC收敛到具有高概率的最佳政策。统一-PAC保证是文献中强化学习的最强烈保证,它可以直接意味着PAC和高概率遗憾,使我们的算法优于具有线性函数近似的所有现有算法。在我们的算法的核心,是一种新颖的最小值函数估计器和多级别分区方案,以从历史观察中选择训练样本。这两种技术都是新的和独立的兴趣。
translated by 谷歌翻译
我们在适应性约束下研究了强化学习(RL),线性函数近似。我们考虑两个流行的有限适应性模型:批量学习模型和稀有策略交换机模型,并提出了两个有效的在线线性马尔可夫决策过程的在线RL算法,其中转换概率和奖励函数可以表示为一些线性函数已知的特征映射。具体而言,对于批量学习模型,我们提出的LSVI-UCB-批处理算法实现了$ \ tilde o(\ sqrt {d ^ 3h ^ 3t} + dht / b)$后悔,$ d $是尺寸特征映射,$ H $是剧集长度,$ t $是交互数量,$ b $是批次数。我们的结果表明,只使用$ \ sqrt {t / dh} $批量来获得$ \ tilde o(\ sqrt {d ^ 3h ^ 3t})$后悔。对于稀有策略开关模型,我们提出的LSVI-UCB-RARESWICH算法享有$ \ TINDE O(\ SQRT {D ^ 3h ^ 3t [1 + T /(DH)] ^ {dh / b})$遗憾,这意味着$ dh \ log t $策略交换机足以获得$ \ tilde o(\ sqrt {d ^ 3h ^ 3t})$后悔。我们的算法达到与LSVI-UCB算法相同的遗憾(Jin等,2019),但具有大量较小的适应性。我们还为批量学习模式建立了较低的界限,这表明对我们遗憾的依赖于您的遗憾界限是紧张的。
translated by 谷歌翻译
汤普森采样(TS)是解决上下文多武装强盗问题最有效的算法之一。在本文中,我们提出了一种新的算法,称为神经汤普森采样,这适应了深度神经网络,用于勘探和剥削。在我们的算法的核心是一种新的奖励的后分布,其平均值是神经网络近似器,并且其方差建立在相应神经网络的神经切线特征上。我们证明,如果底层奖励函数是有界的,则可以保证所提出的算法来实现$ \ mathcal {o}(t ^ {1/2})$的累积遗憾,它与其他上下文强盗算法的遗憾匹配总轮数量$ t $。各种数据集中其他基准强盗算法的实验比较证实了我们的理论。
translated by 谷歌翻译
在表格设置下,我们研究了折扣马尔可夫决策过程(MDP)的强化学习问题。我们提出了一种名为UCBVI - $ \ Gamma $的基于模型的算法,该算法基于\ emph {面对不确定原理}和伯尔斯坦型奖金的乐观。我们展示了UCBVI - $ \ Gamma $实现了一个$ \ tilde {o} \ big({\ sqrt {sat}} / {(1- \ gamma)^ {1.5}} \ big)$后悔,在哪里$ s $是州的数量,$ a $是行动的数量,$ \ gamma $是折扣因子,$ t $是步数。此外,我们构建了一类硬MDP并表明对于任何算法,预期的遗憾是至少$ \ tilde {\ omega} \ big({\ sqrt {sat}} / {(1- \ gamma)^ {1.5}} \大)$。我们的上限与对数因子的最低限度相匹配,这表明UCBVI - $ \ Gamma $几乎最小的贴现MDP。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译